
Using Markov Chain and Graph Theory Concepts to Analyze Behavior
in Complex Distributed Systems

Christopher Dabrowski

U.S. National Institute of Standards and Technology

Gaithersburg, MD, USA

cdabrowski@nist.gov

Fern Hunt

U.S. National Institute of Standards and Technology

Gaithersburg, MD, USA

fhunt@nist.gov

Abstract— We describe how Markov chain analysis and graph

theory concepts can be used together to efficiently analyze

behavior of complex distributed systems. Specifically, the

paper shows how minimal s-t cut sets can be used to identify

state transitions in a graph of a piece-wise homogenous

Markov chain, which if suitably perturbed, degrade the

performance degradations in the system being modeled. Using

a computing grid simulation as an example, the paper shows

that this approach can be used to predict situations where

performance degrades under different conditions. Preliminary

experiments show this approach can be applied to problems of

significant size. We conclude that the use of minimal s-t cut-

sets to perturb a Markov chain has potential for practical use

in analyzing distributed systems behavior and describe how

this might be done in support of real-time system monitoring.

This approach has not previously been studied as a practical

means for analyzing dynamic behavior in distributed systems.

Keywords- piece-wise homogenous Discrete Time Markov

chain; distributed system; minimal s-t cut set; system monitoring.

I. INTRODUCTION

In large-scale, dynamic distributed systems, such as
computing grids, the interactions of many independent
components can lead to emergent system-wide behaviors
with unforeseen, often detrimental, outcomes [1]. To ensure
availability and reliability of computing services in such
environments, system monitoring tools will be needed to
rapidly assess trends and predict changes in system behavior
caused by such factors as shifts in workload, modifications to
system configurations, policy changes, or failures.

In an earlier paper [2], we described a succinct Discrete

Time Markov chain (DTMC) representation for analyzing

dynamic behavior in distributed systems. To capture change

in system behavior over time, the DTMC representation was

made piecewise homogenous [3], in which a set of transition

probability matrices (TPMs) modeled successive time

periods. This differs from a conventional DTMC that is

homogeneous, in which a TPM does not change over time.

The TPM set could be perturbed by systematically changing

the values of related state transition probabilities to examine

alternative system execution paths and identify critical state

transitions where perturbation most affected performance.

The critical transitions could then be related to events such

as failures, policy changes, and workload shifts, in order to

predict the extent of performance decline caused by such

events and to establish related performance thresholds. This

initial approach however, required extensive computation,

which slowed analysis.
This paper extends [2] to use minimal s-t cut-sets [4] of a

graph of a piecewise homogenous DTMC to rapidly identify

critical state transitions, which when suitably perturbed, lead

to large performance degradations. Use of minimal s-t cut

sets, defined in Section IV, reduces the computation needed

to find critical transitions, and can thus be applied to more

complex problems than our initial approach. We show

minimal s-t cut analysis can be efficiently used in grid

system simulations with different durations and workloads,

and that it can also find combinations of critical transitions

that represent more complicated circumstances. For larger

problems, we provide an algorithm for finding minimal s-t

cut sets that can be bounded to run within reasonable time

limits, and that is effective in identifying critical transitions

in DTMCs with up to 50 states and 160 state transitions. We

then discuss the potential use of these capabilities to predict

performance degradations in support of real-time system

monitoring. To our knowledge, the use of minimal s-t cut-

set analysis to perturb a piecewise homogenous DTMC has

not previously been studied as a practical approach for

analysis of dynamic behavior in distributed systems.
This paper is organized as follows. Section II discusses

related work on using Markov chains to analyze dynamic
systems. Section III summarizes the DTMC for the grid
system [2] used here. Section IV defines minimal s-t cut sets
and describes how they are used to find critical transitions in
a DTMC. Section V describes an algorithm for computing
minimal s-t cut sets in large Markov chain graphs and
analyzes its performance. Section VI discusses potential use
of minimal s-t cut set analysis to monitor real-time systems.
The last sections outline future work and conclude.

II. RELATED WORK

The method discussed here should be distinguished from

the well-known use of DTMCs for providing quantitative

measures of system performance and reliability, reviewed in

[2, 5]. Of this work, perhaps most closely related are [6, 7],

where a control loop is employed to mitigate network delay

and a Markov chain model is used to represent and measure

delay. Instead of measuring reliability, we use DTMCs to

examine alternative execution paths in dynamic systems and

identify scenarios where performance degrades.

Both perturbation analysis and graph theory have

previously been applied to DTMCs, but for different

purposes than we intend. Perturbation analysis of DTMCs

has been the topic of theoretical [8-10] and computational

study [11, 12]. Other researchers [13-15] have used system

performance gradients that are based on key decision

parameters to perturb Markov models. While gradient-based

approaches demonstrated potential in modeling performance

change, some issues involving computation of gradients

required further research [15]. Also, gradient-based

approaches seem geared for system optimization, rather than

for examining alternative execution paths and identifying

situations in which performance degrades.
Graph-theoretic methods have also been used previously

to study dynamic behavior in Markov chain models. For
example, graph decomposition has been used to calculate
stationary probability distribution vectors of Markov chains
[16-18] as well as to measure how perturbation affects
stationary distributions [19]. Minimal cut set analysis has
been used on topology graphs of avionics system
components to identify the shortest sequence of component
failures [20]. However, the combined use of minimal s-t cut
sets and a piecewise homogenous DTMC representation has
not previously been studied as an approach for analysis of
distributed systems behavior. Finally, there are maximum-
flow algorithms [21-23], well-known graph-theoretic
methods that find s-t cut sets on the basis of flow levels.
These algorithms could potentially be used to identify critical
state transitions. However, because these algorithms use
flows, they are distinguishable from Markov chain
approaches and so best merit separate investigation.

III. THE DISCRETE TIME MARKOV CHAIN MODEL

The DTMC model of a grid system was developed by
observing a large-scale grid computing simulation [1]. This
section overviews this model, with full details in [2]. The
DTMC grid model simulates the progress of a large number
of computing tasks from the time they are submitted to the
grid for execution to the time they either complete or fail.
Fig. 1 shows a state diagram of this system, which describes
the lifecycle of a single task. This model has 7 states: an
Initial state, where a task remains prior to submission; a
Discovering state, during which service discovery directories
are accessed to locate grid service providers to execute the
task; a Negotiating state during which a Service Level
Agreement for task execution is negotiated with discovered
providers; a Waiting state where tasks reside that are
temporarily unsuccessful in discovery or negotiation; and a
Monitoring phase in which a task is executed by a contracted
provider before a deadline. Transitions between states,
shown in Fig. 1 by arrows, represent actions taken by the
grid system to process a task. All tasks eventually enter
either the Tasks Completed or Tasks Failed state, which are
the absorbing states of the Markov chain, because once

entered, a task cannot leave. A Markov chain with these
characteristics is called an absorbing chain.

Figure 1. State model of grid computing system.

 The large-scale grid simulation was observed over
extended durations to accumulate frequencies for the state
transitions shown in Fig. 1, compute transition probabilities,
and form TPMs. Separate observations were made to create
two cases: (a) one in which the system executes for 8 hours
with varying workload; and (b) a 640 hour execution that
reaches near steady state. To create piece-wise homogenous
representations for the two cases, the total duration of each
was divided into equal periods of 7200 s and a TPM was
computed for each period. Fig. 2 shows the summary TPMs
for the two cases, which are weighted averages of their
respective time period TPMs and in which weights are based
on the relative number of transitions in each period.

(a)

(b)

Figure 2. (a, b) Summary TPMs for the grid system over (a) 8 and (b) 640

hour durations. The summary TPMs are weighted averages of their
component time period TPMs, in which the weight of each TPM is

determined by the relative number of transitions in the related time period.

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial

State

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

Initial Wait Disc Ngt Mon Compl Fail

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.7612 0.0460 0.1911 0 0 0.0017

Disc 0 0.0686 0.6084 0.3230 0 0 0

Ngt 0 0.2401 0.0062 0.2378 0.4801 0 0.0358

Mon 0 0 0 0.0007 0.9902 0.009 0

Compl 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 1.0

To simulate system behavior over time, a well-known
DTMC method was employed in which multiplication of the
time period TPMs is used to advance the system state in
discrete time steps. Fig. 3 shows that this process, referred to
in this paper as Markov simulation, closely approximates the
performance of a large-scale simulation in the two cases.

(a)

(b)

Figure 3. Performance of Markov chain and large-scale simulations as

measured by Tasks Completed for the grid system over (a) 8 hours (5 time

period TPMs and 421 time steps, including an extra cleanup period), and

(b) 640 hours (steps 321 time period TPMs and 27000 time steps with
cleanup). A time period represents 7200s and a time step represents 85 s.

 To identify critical state transitions, we described a

perturbation algorithm in [2], which systematically changes

values of combinations of related state transition

probabilities in a piecewise homogenous DTMC and

evaluates alternative system executions using Markov

simulation. The algorithm identifies those combinations that

degrade system performance. The algorithm can be applied

to all rows (states) to exhaustively perturb a TPM and reveal

individual critical state transitions where perturbation causes

system performance to fall. The algorithm replicates (with

good agreement) scenarios in which performance drastically

degrades in a large-scale grid simulation [1].

 Fig. 4 provides an example of a critical state transition,

Negotiating  Monitoring, identified by the perturbation

algorithm. The figure shows the impact of a set of related

perturbations in which lowering the probability of transition

to 0 for Negotiating  Monitoring causes the proportion of

Tasks Completed to fall to 0 in the Markov simulation (blue

curves). The figure also shows the result of the large-scale

grid simulation (red curve), which was altered to

deliberately fail negotiations. The Markov simulation curve

shows a similar threshold and sharp drop in Tasks

Completed as does the large-scale simulation. Though the

computational cost of the perturbation algorithm prohibits

use on large problems, it provides a comparative basis to

assess the results of minimal s-t cut-set analysis.

Figure 4. Perturbation of Negotiating State to reduce the probability of

transition from Negotiating  Monitoring while raising the probability of
transition from Negotiating to Waiting in the 640 hour case. The blue curve

shows the proportion of Tasks Completed produced by the perturbation

algorithm. Large-scale simulation results are denoted by red triangles.

IV. MINIMAL S-T CUT SET ANALYSIS IN A

MARKOV CHAIN MODEL

This section describes how identifying minimal s-t cut
sets on paths between an Initial state and a desired absorbing
state can be used to identify critical state transitions in a
DTMC, which if perturbed, lead to system performance
degradations. In contrast to the perturbation algorithm, which
can identify only single state transitions that are critical,
minimal s-t cut set analysis identifies combinations of critical
state transitions, an important benefit for analysis of more
complex problems. In Section V, we describe an algorithm
for finding minimal s-t cut sets and show its effectiveness for
large problems. We note that this approach does not use flow
levels to define minimality, but instead uses cardinality and
other factors discussed below

A. Definitions

In graph theory, a graph G (V, E) consists of a set of

vertices V connected by edges from the set E. A directed

graph is a graph in which edges can be traversed in only one

direction. It is easy to see that a Markov chain is a directed

graph, in which vertices correspond to states and directed

edges correspond to state transitions. A directed path

through this graph is a sequence of state transitions from

one state to another. In this problem, the directed paths of

most interest are non-cyclic paths that lead from the Initial

state to one of the two absorbing states: Tasks Completed or

Tasks Failed. This paper considers only paths to Tasks

Completed. Fig. 5 shows two such paths.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000
4000

6000
8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

Time Step

Pr
o

p
o

rt
io

n
 T

as
ks

 C
o

m
p

le
te

d

Large-scale simulation

Markov simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s
k
s

C
o

m
p

le
te

d

Time Step

Large-scale simulation

Markov simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Decrease in Probability of Transition from Negotiating to Monitoring

Figure 5. There are 2 directed paths (in red) from the Initial State to Tasks

Completed, labeled 1 and 2. Three single-transition s-t cuts (minimal s-t cut
sets consiting of one state transition) are marked by single bars. Two

multiple transition s-t cuts (s-t cut sets with two transitions each) are

marked by double bars: (a) Discovering  Negotiating and Discovering 
Waiting; and (b) Discovering  Negotiating and Waiting  Negotiating.

Trap states are denoted by T.

A set of one or more edges, which if removed,

disconnects all paths between two vertices s and t is referred

to as an s-t cut set [4]. An s-t cut set is a minimal s-t cut set

if removal of any edge from the cut set reconnects s and t.

By finding minimal s-t cut sets consisting of state transitions

that disconnect the Initial and Tasks Completed states, it is

possible to know where reducing the related transition

probabilities to 0 can halt the progress of tasks to

completion. In this paper, minimal s-t cut sets with a single

member will be referred to as single-transition s-t cuts,

while those with more than one member are multiple-

transition s-t cuts. State transitions that are members of a

minimal s-t cut set are critical state transitions.

B. Identifying Minimal s-t Cut Sets in the Grid Markov

Chain Model

In Fig. 5, there are 3 single-transition s-t cuts: Initial 

Discovering, Negotiating  Monitoring, and Monitoring 

Tasks Completed. Fig. 4 has shown that reducing the

probability of transition for Negotiating  Monitoring to 0

using Markov simulation causes the proportion of tasks

reaching Tasks Completed to drop to 0. The same result

occurs when the other two single-transition s-t cuts, Initial

 Discovering and Monitoring  Tasks Completed, are

similarly perturbed (see [2]). Exhaustive use of the

perturbation algorithm confirms that the 3 single-transition

s-t cuts identify state transitions, which if reduced to 0,

cause the proportion of tasks reaching the Tasks Completed

state to fall to 0 (see Sec. V). These 3 single-transition s-t

cuts are critical state transitions that are clearly related to

critical steps in allocating resources to, and executing, tasks.

Fig. 5 also shows two multiple-transition s-t cuts, labeled (a)

and (b), which disconnect all paths between the Initial from

the Tasks Completed state. Both multiple transition cuts

have two transitions. In a multiple-transition s-t cut,

lowering transition probabilities to 0 of all transitions in the

cut set reduces the proportion of Tasks Completed to 0.

Multiple-transition s-t cuts identify situations where a

combination of state transitions is critical and together

points to circumstances that degrade system performance.

We return to multiple-transition s-t cuts in Section V.

C. Identifying Trap States

The previous discussion considered only state transitions

between different states. However, in a DTMC, a state may

also transition to itself in the next discrete time step and

remain in the same state. In this paper, this is referred to as a

self-transition. If a self-transition probability is near 1, the

task may stay in the state for a long time. Such a state

effectively becomes a trap state. Fig. 6 shows an example of

how a trap state affects performance, when the self-

transition probability of the Discovering state is raised to 1.

Figure 6. Perturbation of Discovering to increase the self-transition

probability to 1 while decreasing the probability of transition from

Discovering to other states to 0 in 640 hour case. The blue curve shows the

proportion of Tasks Completed produced by the perturbation algorithm.
Values from the large-scale simulation are shown by red triangles.

Tasks are thus stalled in Discovering, so that they cannot

proceed to other states and complete by their deadlines. The

evolution of Discovering into a trap state may indicate

failure of the service discovery function in a real-world

scenario. A trap states is distinguished from a permanent

absorbing state, which always has a self-transition

probability of 1, while the self-transition probability of a

trap state varies. The concept of an s-t cut set can be

extended to include vertices whose removal cuts all paths

from s to t. A minimal set of such elements (edges and

vertices) is a minimal s-t separating set [24]. We leave

minimal s-t separating sets for potential future work.

V. PERFORMANCE OF MINIMAL S-T CUT SET ANALYSIS

This section shows that minimal s-t cut set analysis is an

effective and efficient means of finding critical state

transitions and trap states. The section also shows the

potential applicability of this approach to large problems.

Section V(A) first describes a well-known algorithm, known

as the node contraction algorithm, which we adapted to find

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial

State

1,2

1

2

2

1,2

1,2

T

(a)

(b)(a)

(b) T

T

T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Increase in Probability of Discovering Self-Transition

minimal s-t cut sets in a directed graph. The node

contraction algorithm is probabilistic [25], in that can find

solutions with a probability which can be increased to a high

level by repeatedly executing the algorithm. Though it is not

guaranteed to find all minimal s-t cut sets, the computational

cost of node contraction can be bounded, making it

potentially applicable to large problems where the

perturbation algorithm and other exhaustive methods would

be infeasible. The node contraction algorithm also finds

critical transitions that are part of multiple transition s-t cuts,

which the perturbation algorithm cannot find.

 Section V(B) shows effectiveness and efficiency of node

contraction for the grid system problem. Here, the node

contraction algorithm finds all individual critical transitions

and trap states that were found using the perturbation

algorithm, but at far less cost. Section V(C) then reports

experiments on the use of node contraction for finding

critical state transitions in large Markov chain problems. To

do this, the performance of the node contraction algorithm is

tested by comparing it to the performance of an algorithm

[26] that, unlike node contraction, enumerates all minimal s-

t cut sets in a directed graph, and thus finds all critical

transitions. While, like other algorithms of this type, the

time complexity of [26] prohibits practical use on many

large problems, the algorithm provides a good baseline for

testing. (This complexity is O |E| for each s-t cut set that

exists, where |E| is the number of edges in the graph [26]).

To examine the potential for scalability of minimal s-t cut

set analysis, we wish to know what proportion of minimal s-

t cut sets (and thus critical transitions) can be found by node

contraction in large problems and its computational cost.

A. Overview of the Node Contraction Algorithm

In this section, we summarize our implementation of the
node contraction algorithm, with pseudo-code in [5]. Though
the time complexity of node contraction algorithms for
directed graphs has not been studied, efficient versions of
this algorithm for undirected graphs find a minimum cut with
a complexity of O |V|

2
], where |V| is the number of vertices in

the graph [25]. While this cost is significant, the algorithm
can be used on large problems by controlling the number of
executions, as will be discussed in Section V(C).

The node contraction algorithm operates by randomly

choosing two vertices connected by an edge and replacing

these vertices with a single, new vertex. The new vertex

assumes the edges by which the two replaced vertices were

connected to the remainder of the graph (i.e., the edges of

replaced vertices become the edges of the new vertex) and

takes up the edges that connected the two replaced vertices.

The result of each contraction is recorded. The process of

randomly selecting pairs of vertices repeats until only two

large, mega-vertices remain. The directed edges between the

two remaining mega-vertices c1 and c2, and the directed

edges between vertices <v1, v2>, v1≠ v2, in which v1 was

replaced by c1 and v2 was replaced by c2, constitute a

minimal s-t cut set of the graph. The node contraction

algorithm was modified for an absorbing Markov chain

problem to prevent the two vertices representing the Initial

state, s, and the Tasks Completed absorbing state, t, from

being contracted into the same vertex. This ensures that the

Initial state, s, and Tasks Completed state, t, will not both

end up in either c1 or c2. In this way, the edges between the

two remaining mega-vertices, c1 and c2, together with the

vertices each has absorbed, yield a minimal s-t cut set of

state transitions, which if removed, disconnect the Initial

and absorbing state (Tasks Completed).

Since the algorithm randomly selects two connected

vertices to combine, repeated applications produce different

cut sets. The more the algorithm is repeated, the greater the

chances that a large proportion, if not all, of the minimal s-t

cut sets of interest will be obtained. Hence, the operation of

the algorithm can be said to be probabilistic. Because the

number of repetitions can be controlled, computation cost

can be bounded. Further, cut sets can identify potential trap

states, which exist when all transitions in the cut set emanate

from the same state. Markov simulation then need be

applied only to the transitions in the s-t cut sets, in order to

generate curves of tasks completed, such as are shown in

Figs. 4 and 6, and to identify performance thresholds.

B. Comparing the Perturbation AlgorithmWith Minimal s-

t Cut Set Analysis Using Node Contraction

Table I compares the result of applying the perturbation

algorithm described in Section III with the result of minimal

s-t cut set analysis using node contraction, when both are

used to identify individual critical state transitions and trap

states. The perturbation algorithm was applied to the 5 rows

representing non-absorbing states (labeled a-e) for each time

period TPM in both the 8 and 640 hour cases. The

combinations of row elements representing the probability

of transition being decreased and increased appear in the 2

leftmost columns. For each such combination of transitions,

the next two columns show the proportion of Tasks

Completed for the 8 and 640 hour cases as the probability of

the state transition being decreased falls to 0. The rightmost

column indicates if the state transition being reduced

corresponds to a single-transition s-t cut.

Table I shows that all combinations where perturbation

caused a decline in the proportion in Tasks Completed that

fell to 0 corresponded to single-transition s-t cuts. There are

7 such combinations, and all correspond to single-transition

s-t cuts that are verified by large-scale simulation. In no

case, did node contraction find an s-t cut that did not

correspond to such a drastic reduction. For instance, in

Table I(c), rows 10-12, when the probability of transition

from the Negotiating state to Monitoring (i.e. Negotiating

 Monitoring) is reduced to 0, the proportion of Tasks

Completed falls to 0. This is shown in Fig. 4. Fig. 5 shows

that Negotiating  Monitoring is a single-transition s-t cut.

Note that in Table I(d), row 3, reducing the probability of

Monitoring self-transition while raising the probability of

Monitoring  Negotiating also caused a severe decline in

the proportion of Tasks Completed. This happens because

the probability of transition for Monitoring  Tasks

Completed is very low (see Fig. 2), and so the probability of

Monitoring self-transition must be very high to ensure tasks

remain in the Monitoring state long enough to eventually

transition to Tasks Completed. Thus, reducing the

probability of Monitoring self-transition to 0 while raising

the transition probability of Monitoring  Negotiating

prevents tasks from reaching Tasks Completed—and acts

like a single-transition s-t cut on Monitoring  Tasks

Completed. However, because the transition probability of

Monitoring  Tasks Completed is not lowered to 0 in this

perturbation, some tasks complete. The table also contains

rows that show only partial reductions (Table I (a), rows 5-

6, and Table I (b), row 5). These correspond to the state

transitions in the two multiple transition s-t cuts in Fig. 5,

which were identified by node contraction, but could not be

identified by the perturbation algorithm of Section III.
The perturbation algorithm was also applied to raise the

self-transition probability of the 5 non-absorbing states in the
grid model to 1. This perturbation caused the proportion of
Tasks Completed to decline to 0 when applied to 4 of these

In Fig. 5, corresponds to single-transition s-t cuts for
aNegotiating to Monitoring
bMonitoring to Tasks Completed
cInitial to Discovering

*Note explanation in text on this page below for (d), row 5.

states: Initial, Discovering, Negotiating, and Monitoring

states. All 4 are trap states found through node contraction.

The fifth state, Waiting, is not a trap state; but is part of a

state transition that is a member of the two multiple-

transition s-t cuts in Fig. 5. Hence, if the self-transition

probability of Waiting is raised to 1, there is only a partial

downward effect on the proportion of task completions.

Executing the exhaustive perturbation algorithm on non-

absorbing rows of the grid model took 56 minutes in the 8

hour case and 4.5 hours in the 640 hour case. In comparison,

node contraction needed less than 0.01 s to find all minimal

s-t cut sets and trap states. In the 8 hour case, generating

Markov simulation curves to reduce the proportion of Tasks

Completed to 0 for the minimal s-t cut sets and trap states

required 244 s, or 7 % of the 56 minutes needed by the

perturbation algorithm. In the 640 hour case, these same

computations took 230 s, or 1.4 % of the 4.5 hours needed

by the perturbation algorithm. Thus, minimal s-t cut set

analysis yielded two orders of magnitude improvement in

run time over exhaustive application of the perturbation

algorithm. All experiments were executed on a Dell

PowerEdge 6950 with quad, dual-core 3.0GHz processors

and 32GB memory, running under Windows 2003.

(c) r = Negotiating

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.985 0.938 No
3 Waiting Monitoring 1.000 0.939 No
4 Discovering Waiting 0.954 0.935 No
5 Discovering Negotiating 0.957 0.935 No
6 Discovering Monitoring 0.967 0.936 No
7 Negotiating Waiting 0.923 0.931 No
8 Negotiating Discovering 0.941 0.933 No
9 Negotiating Monitoring 0.988 0.938 No
10 Monitoring Waiting 0.000 0.000 Yesa

11 Monitoring Discovering 0.000 0.000 Yesa

12 Monitoring Negotiating 0.000 0.000 Yesa

(a) row = Discovering

Element
reduced0

Element
raised

Proportion of
Tasks Complete

s-t cut
exists

8-hour 640-hour

1 Waiting Discovering 0.957 0.935 No
2 Waiting Negotiating 0.959 0.935 No
3 Discovering Waiting 0.939 0.935 No
4 Discovering Negotiating 0.963 0.935 No
5 Negotiating Waiting 0.894 0.933 No
6 Negotiating Discovering 0.651 0.932 No

(d) row = Monitoring

1 Negotiating Monitoring 0.982 0.937 No
2 Negotiating Tasks Comp 0.982 0.938 No
3 Monitoring Negotiating 0.028 0.186 Yesb *

4 Monitoring Tasks Comp 0.980 0.949 No
5 Tasks Comp Negotiating 0.001 0.006 Yesb

6 Tasks Comp Monitoring 0.002 0.016 Yesb

(b) row = Waiting

Element
reduced0

Element
raised

Proportion of
Tasks Complete

s-t cut
exists

8-hour 640-hour

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.981 0.939 No
3 Discovering Waiting 0.937 0.934 No
4 Discovering Negotiating 0.963 0.936 No
5 Negotiating Waiting 0.818 0.843 No
6 Negotiating Discovering 0.939 0.932 No

(e) row = Initial

1 Discovering Initial 0 0 Yesc

2 Initial Discovering 0.970 0.988 No

TABLE I. Comparison of results of applying the perturbation algorithm to completely perturb all rows of the TPMs for 8 and 640 hour cases and

existing single-transition s-t cuts found by the node contraction algorithm. Perturbations verified by altering the large-scale grid system simultion

are bolded and shaded.

C. Using Node Contraction to Find Minimal s-t Cut Sets in

Large Problems

This section reports the results of experiments on the use

of the node contraction algorithm to find critical transitions

in large, complex Markov chain models with many multiple

transition minimal s-t cuts. These experiments compare the

results of using the contraction algorithm to the results

produced by the enumeration algorithm of [26] which is

guaranteed to find all minimal s-t cut sets and the critical

transitions that these cut sets contain. Here, the criticality of

transitions is estimated using measures we define for these

experiments. The results show that, with some exceptions,

the node contraction algorithm found a large proportion of

the most critical cut sets in two orders of magnitude less

time than did exhaustive enumeration. While further

experiments are needed, these preliminary investigations

suggest that minimal s-t cut set analysis can effectively

identify critical transitions in large, complex Markov chain

graphs as might be encountered in real-world problems.

1) Experimenal Design: To perform these experiments,

four Markov chain models were selected, each consisting of

40 or 50 states, from [27-29] and single time-period TPMs

were generated using [30]. All four problems were

originally ergodic chains, which were suitably modified to

be absorbing chains. Though the matrices were sparse, these

problems were large and complex, with a very sizable

number of minimal s-t cut sets (> 4×10
8
 for the largest)

between the Initial and absorbing states. (See Table 2.) In

contrast to the grid system model, minimal s-t cut sets for

these problems consisted of multiple state transitions, which

could correspond to combinations of circumstances that

impact system performance. In [5], a complete description

of these four Markov chain problems is provided, which

must be omitted here due to space limitations.

TABLE II. Comparison of minimal s-t cut sets generated by the

enumeration algorithm of [26] and by the node contraction algorithm. At

10,000 repetitions the node contraction generated 77.2 % (variance 555.2)
of the top 100 ranked cut sets in 0.14 % of the time for Sorts A-C. At

100,000 repetitions, node contraction generated 91.4 % (variance 432.0) of

the cut sets found by enumeration in 1.3 % of the time.

To provide a baseline measure for the number of minimal

s-t cut sets in these Markov chain graphs, the minimal s-t

cut set enumeration algorithm of [26] was implemented,

which lists all cut sets. To determine which minimal s-t cut

sets were most critical, ranking criteria were selected based

on the idea that the most critical cut sets will have a small

number of state transitions. We chose this basis, because

fewer transitions represent smaller combinations of

circumstances that are more likely to occur and thus more

likely to impact a system. (Note: this intuition is supported

in the case of undirected graphs in [31] by the finding that

small cut sets are more likely to disconnect undirected

graphs, if edges of the graph that fail independently with a

known probability.) We used this basis to choose 3 ranking

criteria. The first criterion, Sort A, ranks minimal s-t cut sets

by the fewest number of edges as the primary sorting

criterion and lowest total transition probability of edges as

the secondary criterion. The second, Sort B, uses only the

lowest total transition probability of edges in the cut set as a

sorting criterion (which also tends to rank cut sets with

fewer transitions higher). Hence, Sorts A and B are likely to

identify minimal s-t cut sets in which smaller perturbations

to the fewest number of state transitions are likely to

produce the largest changes. The third ranking criterion,

Sort C, uses least number of edges as a primary sorting

criterion and highest total transition probability of edges as a

secondary criterion. Sort C identifies cut sets consisting of

state transitions that are more likely to be taken and

therefore, if perturbed, could affect system behavior.

2) Experimental Results: We applied the node

contraction algorithm and the enumeration algorithm of [26]

to the four TPMs, ranked the minimal cut sets produced by

each using the ranking criteria described above, and

compared the results to determine the proportion of most

highly ranked cut sets that the node contraction algorithm

could find. With the exception of Matrix 1, Table II shows

that, with 100,000 repetitions, node contraction generated

91.4 % of the top 100 ranked cut sets that were generated by

the enumeration algorithm for all four TPMs under all three

sorting criteria. The contracton algorithm produced these

results in 1.3 % of the time needed by enumeration. This

amounts to a two-order of magnitude improvement in time.

For instance, for Matrices 2 and 3, the algorithm was able to

find almost all top 100 minimal s-t cut sets in a relatively

small fraction of the number of hours required by the

enumeration algorithm. For matrix 4, the node contraction

algorithm could find all the top 100 under sort criteria B and

C in about 15 minutes (as opposed to 156.1 hours through

enumeration). Here, node contraction was successful despite

the fact that Matrix 4 has over 4 ×10
8
 minimal s-t cut sets.

However, in Matrix 4, the algorithm found only 37 of 100

high ranked minimal s-t cut sets under Sort A. Also, for

Matrix 1, Table II shows that the node contraction algorithm

Minimal s-t
cut set
enumeration

Proportion (in %) of 100 top-ranked minimal s-t
cut sets ranked by criteria A, B that were found by
the node contraction algorithm

Number
of cut
sets

Time
in
hours

After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332 s 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36.0 218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 193.6 106 s 30 80 62 1051 s 37 100 100

N
u

m
b

er

O
rd

er

had to run longer than the enumeration algorithm, before it

began to produce a large percentage of highly-ranked cut

sets. This difference in performance may also be attributable

in part to topological characteristics such as vertices (states)

with large numbers of edges (state transitions), which

increases vertex interconnectivity and impedes the

contraction process. This exception suggests that in some

cases where TPMs are small, it may be more efficient to

enumerate cut sets than to generate them probabilistically.

Despite these exceptions, the data shows that the node

contraction algorithm can be used to find a high proportion

of minimal s-t cut sets representing combinations of critical

state transitions in larger Markov chains within reasonable

time limits.

VI. USING A MARKOV CHAIN COMPONENT TO SUPPORT

MONITORING OF A DISTRIBUTED SYSTEM

Using the grid system example, it is possible to envision

a monitoring system organized as a real-time feedback

control loop, in which a Markov chain analysis component

with the capabilities described above runs as an on-demand

background process. Such a Markov component might

interact with a decision module and lower-level sensors as

outlined below and depicted in Fig. 7.

To provide data for the Markov component, embedded

sensors first record activity in the grid system about events

such as negotiated service agreements and task completions,

and forward the data to a sensor monitor. The monitor maps

this sensor data to state transitions, and periodically sends

this information to a TPM set computation module. The

module uses this information to re-compute transition

probabilities and update a TPM set for a piecewise

homogenous representation, which is maintained to allow

access by both the Markov component and decision module.

The Markov component may be activated either on a

regular basis by the decision module or externally when

design changes and other significant events occur. The

Markov component maintains an updatable DTMC graph

representation of the grid system. When activated, the

Markov component obtains the most recent TPM

information from the TPM set computation module. The

Markov component then computes minimal s-t cut sets

between the Initial and Task Completed states, and identifies

critical state transitions and trap states. It also calculates

threshold values for critical transitions and trap states, which

when exceeded, indicate impending performance collapses

(as in Figs. 4 and 6). The Markov component sends the

results of its computations to the decision module.

The decision module also periodically obtains updated

TPM information from the TPM computation module and

matches this information to the critical transitions and trap

states that were supplied by the Markov component. If, over

time, the decision module observes a downward trend in the

value of transition probabilities for critical transitions that

exceeds a threshold, or a similar rise in the self-transition

frequency of a trap state, it takes corrective action or notifies

affected parties.

Figure 7. Use of a Markov chain analysis component in monitoring a

distributed system. Thick solid arrows indicate control, while thin dashed

arrows show data flow.

 For example, suppose that over time the decision module

receives updated TPM information which shows that the

probability of self-transition to Discovering is increasing.

This trend may reflect a partial failure of service discovery

directories, which is prolonging discovery activity and

causing tasks to stall in the Discovering state. As the trend

worsens and the self-transition probability reaches a

threshold, the decision module may initiate diagnostic

procedures targeted to the service discovery function and

notify a human operator. Note that the responsiveness of the

self-management component is not impaired by the

background Markov process, which itself does not operate

in real time.

VII. CONCLUSIONS AND FUTURE WORK

This paper has shown that the identification of minimal s-

t cut sets on paths from the initial to the absorbing state can

be used to perturb a piecewise homogenous Discrete Time

Markov chain model of a dynamic distributed system in

order to accurately and efficiently predict performance

degradations. The paper has discussed how a probabilistic

algorithm can be used for this purpose and shown that it is

effective in analyzing a simulated grid computing system.

Experimental results were provided that show the potential

of this algorithm for efficiently analyzing large, complex

problems and finding sets of related critical transitions that

represent complicated circumstances. The perturbation of a

piece-wise homogenous discrete Markov chain using

minimal s-t cut set analysis has not been studied before for

as a practical means for analysis of distributed system

External
notifications

Frequency data from
embedded sensors

Sensor monitor

Frequency
summaries Decision

module

Design changes or
external events

Actions

Markov analysis
component

Critical state
transitions,
trap states,
and thresholds

Activation

Activation

TPM set
computation

Updated
TPMs

dynamics. We believe that this combination of capabilities

can potentially provide the basis for an operational tool for

analyzing distributed system behavior and predicting

performance degradations.

 To further test the approach described here, we intend to

carry out experiments on other kinds of distributed systems,

such as computational clouds. As part of this work, we plan

to extend the analysis to include minimal s-t separating sets,

in which combinations of multiple trap states and state

transitions represent circumstances that may affect system

performance.

 An important direction for future work is the investigation

of other methods that are more effective in finding minimal

s-t cut sets in directed graphs and can be used on larger,

more complex problems. For instance, there are alternative

approaches to probabilistic node contraction, such as [31]

which could be examined. Another possible method

involves use of maximum-flow algorithms [21-23] to find s-

t cut sets that identify critical transitions. These algorithms

find s-t cut sets on the basis of maximum flow and

minimum capacity. Potentially, maximum-flow algorithms

could be adapted to find and rank cut sets on the basis of

their nearness to maximum flow and minimum capacity,

rather than criteria described here. To enable such rankings,

the work of [32, 33] could be used. Finally, we are also

exploring the use of eigensystem analysis of Markov chain

models as a means to predict performance degradation [5].

REFERENCES

[1] K. Mills, and C. Dabrowski. “Investigating Global Behavior in
Computing Grids,” LNCS, vol. 4124. pp. 120-136. Springer, 2006.

[2] C. Dabrowski, and F. Hunt. “Using Markov Chain Analysis to Study
Dynamic Behavior in Large-Scale Grid Systems,” Seventh
Australasian Symp. on Grid Computing and e-Research, 2009.

[3] D. Rosenberg, and E. Solan. Vielle N. “Approximating A Sequence
of Observations by a Simple Process,” The Annals of Statistics, vol.
32, no. 6, pp. 2742-2775, 2004.

[4] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi. “An
Algorithm to Enumerate All Cut Sets of a Graph in Linear Time per
Cutset,” Jour. of the ACM. vol. 27, no.4, pp. 619-632, 1980.

[5] C. Dabrowski, F. Hunt, and K. Morrison. Improving the Efficiency of
Markov Chain Analysis of Complex Distributed Systems. Draft NIST
Interagency Report, 2010.

[6] J. Wu, and F. Deng. “Finite Horizon Optimal Control of Networked
Control Systems with Markov Delays.” Proc. of the Sixth World
Congress on Intelligent Control and Automation. pp. 4513-4517,
2006.

[7] D. Feng, D. Wencai, and L. Zhi. “New Smith Predictor and Nonlinear
Control for Networked Control Systems,” Proc. of the International
MultiConference of Engineers and Computer Scientists, 2009
(Volume II), pp. 1148-1153., 2009.

[8] P. Schweitzer. “Perturbation Theory and Finite Markov Chains.”
Jour. of Applied Probability, vol. 5, no. 2, pp. 401-413, 1968.

[9] F. Delebecque. “A Reduction Process for Perturbed Markov Chains,”
SIAM Jour. of Applied Mathematics, vol. 43, pp. 325-350, 1983.

[10] R. Hassin, and M. Haviv. “Mean Passage Times and Nearly
Uncoupled Markov Chains,” SIAM Jour. of Discrete Mathematics,
vol. 5, no. 3, pp. 386-397, 1992.

[11] C. Meyer. “Stochastic Complementation, Uncoupling Markov
Chains, and the Theory of Nearly Reducible Systems,” SIAM
Review, vol. 31, no. 2, pp. 240-272, 1989.

[12] W. Stewart, and M. Dekker. Numerical Solution of Markov Chains,
Princeton: Princeton University Press, 1994.

[13] Y. Ho, and S. L. “Extensions of infinitesimal perturbation analysis,”
IEEE Trans. on Automation Control, vol. AC-33, no. 5, pp. 427-438,
1988.

[14] R. Suri. “Perturbation Analysis: The State of the Art and Research
Issues Explained via the GI/G/l Queue,” Proc. of the IEEE, vol. 77,
no. 1, pp. 114-138, 1989.

[15] X. Cao, and J. Zhang. “Event-Based Optimization of Markov
Systems,” IEEE Trans. on Automatic Control, vol. 53, no. 4, pp.
1076-1082, 2008.

[16] M. Benzi, and M. Tuma. “A parallel solver for large-scale Markov
chains,” Applied Numerical Mathematics, vol. 41, pp. 135-153, 2002.

[17] A. Gambin, P. Kryzanowski, and P. Pokarowski. “Aggregation
Algorithms for Perturbed Markov Chains with Applications to
Network Modeling,” SIAM Jour. of Scientific Computation, vol. 31,
no.1, pp. 45-77, 2008.

[18] G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. “Markovian
Analysis of Large Finite State Machines,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 12,
1996.

[19] E. Solan, and N. Vielle. “Perturbed Markov Chains,” Jour. of Appl.
Prob. vol. 40, pp. 07-122, 2003.

[20] Z. Tang, and J. Dugan. “Minimal cut set/sequence generation for
dynamic fault trees,” Proc. of the 2004 Annual Symp. on Reliability
and Maintainability, pp. 207- 213, 2004.

[21] L. Ford, and D. Fulkerson. Flows in Networks. Princeton: Princeton
University Press, 1962.

[22] S. Even. Graph Algorithms. Rockville, MD: Computer Science Press,
1979.

[23] A. Goldberg, and R. Tarjan. “A New Approach to the Maximum-
Flow Problem,” Jour. of the ACM. vol. 35, no. 4, pp. 921-940,
October 1988.

[24] J. Hayakawa, S. Tsukiyama, and H. Ariyoshi. “Generation of
Minimal Separating Sets of Graphs,” IEICE Transaction
Fundamentals, vol.E82-A, no. 5, pp. 775-783, 1999.

[25] D. Karger, and C. Stein. “A New Approach to the Minimum Cut
Problem,” Jour. of the ACM, vol. 43, pp. 601-640, 1996.

[26] J. Provan, and D. Shier. “A Paradigm for Listing (s,t)-cuts in
Graphs,” Algorithmica., vol. 15, pp. 351-372, 1996.

[27] A. Boyarksy. “A matrix method for estimating the Liapunov
exponent of one-dimensional systems,” Jour. of Statistical Physics,
vol. 50, no. 1-2, pp. 213-229, 1988.

[28] RW136: Markov Chain Transition Probability Matrix, National
Institute of Standards and Technology,
http://math.nist.gov/MatrixMarket/data/NEP/mvmrwk/rw136.html,
2009.

[29] R. Jensen, and E. Jessup. “Statistical Properties of the Circle Map,”
Jour. of Statistical Physics, vol. 43, no. 1-2, pp. 369-389, 1986.

[30] F. Hunt. “A Monte Carlo Approach To The Approximation of
Invariant Measures,” Random and Computational Dynamics, vol. 2,
no. 1, pp. 111-112, 1994.

[31] D. Karger. “A Randomized Fully Polynomial Time Approximation
Scheme for the All-Terminal Network Reliability Problem,” SIAM
Review, vol. 43, no. 3, pp. 499-522, 2001.

[32] N. Curet, J. DeVinney, and M. Gaston. “An Efficient Network Flow
Code for Finding all Minimum Cost s-t Cutsets,” Computers and
Operations Research, vol. 29, pp. 205-219, 2000.

[33] A. Balcioglu, and K. Wood. “Enumerating Near-Min s-t Cuts,” In
Network Interdiction and Stochastic Integer Programming, ed. D.
Woodruff, Kluwer Academic Publishers, pp. 21-49, 2003.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034
http://math.nist.gov/MatrixMarket/data/NEP/mvmrwk/rw136.html

